Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 654193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149641

RESUMO

Outer membrane vesicles (OMVs) are small vesicles constitutively shed by all Gram-negative bacterium, which have been proposed to play a role in Helicobacter pylori persistence and pathogenesis. The methods currently available for the isolation of H. pylori OMVs are diverse and time-consuming, raising the need for a protocol standardization, which was the main aim of this study. Here, we showed that the chemically defined F12 medium, supplemented with cholesterol, nutritionally supports bacterial growth and maintains H. pylori viability for at least 72 h. Additionally, we developed an abridged protocol for isolation of OMVs from these bacterial cultures, which comprises a low-speed centrifugation, supernatant filtration through a 0.45 µm pore, and two ultracentrifugations for OMVs' recovery and washing. Using this approach, a good yield of highly pure bona fide OMVs was recovered from cultures of different H. pylori strains and in different periods of bacterial growth, as assessed by nanoparticle tracking analysis, transmission electron microscopy (TEM), and proteomic analyses, confirming the reliability of the protocol. Analysis of the proteome of OMVs isolated from H. pylori F12-cholesterol cultures at different time points of bacterial growth revealed differentially expressed proteins, including the vacuolating cytotoxin VacA. In conclusion, this work proposes a time- and cost-efficient protocol for the isolation of H. pylori OMVs from a chemically defined culture medium that is suitable for implementation in research and in the biopharmaceutical field.

2.
Int J Food Microbiol ; 348: 109207, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33930837

RESUMO

Aflatoxins are hepatotoxic and carcinogenic fungal secondary metabolites that usually contaminate crops and represent a serious health hazard for humans and animals worldwide. In this work, the effect of rhamnolipids (RLs) produced by Pseudomonas aeruginosa #112 on the growth and aflatoxins production by Aspergillus flavus MUM 17.14 was studied in vitro. At concentrations between 45 and 1500 mg/L, RLs reduced the mycelial growth of A. flavus by 23-40% and the production of aflatoxins by 93.9-99.5%. Purified mono-RLs and di-RLs exhibited a similar inhibitory activity on fungal growth. However, the RL mixture had a stronger inhibitory effect on aflatoxins production at concentrations up to 190 mg/L, probably due to a synergistic effect resulting from the combination of both congeners. Using transmission electron microscopy, it was demonstrated that RLs damaged the cell wall and the cytoplasmic membrane of the fungus, leading to the loss of intracellular content. This disruptive phenomenon explains the growth inhibition observed. Furthermore, RLs down-regulated the expression of genes aflC, aflE, aflP and aflQ involved in the aflatoxins biosynthetic pathway (6.4, 44.3, 38.1 and 2.0-fold, respectively), which is in agreement with the almost complete inhibition of aflatoxins production. Overall, the results herein gathered demonstrate for the first time that RLs could be used against aflatoxigenic fungi to attenuate the production of aflatoxins, and unraveled some of their mechanisms of action.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Glicolipídeos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Produtos Agrícolas , Genes Fúngicos/genética , Humanos , Hifas/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Pseudomonas aeruginosa/metabolismo
3.
Brain Pathol ; 29(5): 622-639, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30667116

RESUMO

Plasmalogens are the most abundant form of ether phospholipids in myelin and their deficiency causes Rhizomelic Chondrodysplasia Punctata (RCDP), a severe developmental disorder. Using the Gnpat-knockout (KO) mouse as a model of RCDP, we determined the consequences of a plasmalogen deficiency during myelination and myelin homeostasis in the central nervous system (CNS). We unraveled that the lack of plasmalogens causes a generalized hypomyelination in several CNS regions including the optic nerve, corpus callosum and spinal cord. The defect in myelin content evolved to a progressive demyelination concomitant with generalized astrocytosis and white matter-selective microgliosis. Oligodendrocyte precursor cells (OPC) and mature oligodendrocytes were abundant in the CNS of Gnpat KO mice during the active period of demyelination. Axonal loss was minimal in plasmalogen-deficient mice, although axonal damage was observed in spinal cords from aged Gnpat KO mice. Characterization of the plasmalogen-deficient myelin identified myelin basic protein and septin 7 as early markers of dysmyelination, whereas myelin-associated glycoprotein was associated with the active demyelination phase. Using in vitro myelination assays, we unraveled that the intrinsic capacity of oligodendrocytes to ensheath and initiate membrane wrapping requires plasmalogens. The defect in plasmalogens was rescued with glyceryl 1-myristyl ether [1-O-tetradecyl glycerol (1-O-TDG)], a novel alternative precursor in the plasmalogen biosynthesis pathway. 1-O-TDG treatment rescued myelination in plasmalogen-deficient oligodendrocytes and in mutant mice. Our results demonstrate the importance of plasmalogens for oligodendrocyte function and myelin assembly, and identified a novel strategy to promote myelination in nervous tissue.


Assuntos
Éteres de Glicerila/farmacologia , Oligodendroglia/metabolismo , Plasmalogênios/metabolismo , Animais , Axônios/metabolismo , Sistema Nervoso Central/metabolismo , Condrodisplasia Punctata Rizomélica/metabolismo , Doenças Desmielinizantes , Modelos Animais de Doenças , Leucodistrofia Metacromática/fisiopatologia , Camundongos , Camundongos Knockout , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Peroxissomos , Medula Espinal/metabolismo
4.
J Inherit Metab Dis ; 38(1): 111-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432520

RESUMO

Plasmalogens are a special class of ether-phospholipids, best recognized by their vinyl-ether bond at the sn-1 position of the glycerobackbone and by the observation that their deficiency causes rhizomelic chondrodysplasia punctata (RCDP). The complex plasmalogen biosynthetic pathway involves multiple enzymatic steps carried-out in peroxisomes and in the endoplasmic reticulum. The rate limiting step in the biosynthesis of plasmalogens resides in the formation of the fatty alcohol responsible for the formation of an intermediate with an alkyl-linked moiety. The regulation in the biosynthesis of plasmalogens also takes place at this step using a feedback mechanism to stimulate or inhibit the biosynthesis. As such, fatty alcohols play a relevant role in the formation of ether-phospholipids. These advances in our understanding of complex lipid biosynthesis brought two seemingly distinct disorders into the spotlight. Sjögren-Larsson syndrome (SLS) is caused by defects in the microsomal fatty aldehyde dehydrogenase (FALDH) leading to the accumulation of fatty alcohols and fatty aldehydes. In RCDP cells, the defect in plasmalogens is thought to generate a feedback signal to increase their biosynthesis, through the activity of fatty acid reductases to produce fatty alcohols. However, the enzymatic defects in either glyceronephosphate O-acyltransferase (GNPAT) or alkylglycerone phosphate synthase (AGPS) disrupt the biosynthesis and result in the accumulation of the fatty alcohols. A detailed characterization on the processes and enzymes that govern these intricate biosynthetic pathways, as well as, the metabolic characterization of defects along the pathway should increase our understanding of the causes and mechanisms behind these disorders.


Assuntos
Condrodisplasia Punctata Rizomélica/metabolismo , Álcoois Graxos/metabolismo , Plasmalogênios/metabolismo , Síndrome de Sjogren-Larsson/metabolismo , Aldeído Oxirredutases/metabolismo , Aldeídos/metabolismo , Animais , Antioxidantes/metabolismo , Ácidos Graxos/metabolismo , Humanos , Camundongos , Microssomos/metabolismo , Peroxissomos/metabolismo
5.
J Clin Invest ; 124(6): 2560-70, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24762439

RESUMO

Rhizomelic chondrodysplasia punctata (RCDP) is a developmental disorder characterized by hypotonia, cataracts, abnormal ossification, impaired motor development, and intellectual disability. The underlying etiology of RCDP is a deficiency in the biosynthesis of ether phospholipids, of which plasmalogens are the most abundant form in nervous tissue and myelin; however, the role of plasmalogens in the peripheral nervous system is poorly defined. Here, we used mouse models of RCDP and analyzed the consequence of plasmalogen deficiency in peripheral nerves. We determined that plasmalogens are crucial for Schwann cell development and differentiation and that plasmalogen defects impaired radial sorting, myelination, and myelin structure. Plasmalogen insufficiency resulted in defective protein kinase B (AKT) phosphorylation and subsequent signaling, causing overt activation of glycogen synthase kinase 3ß (GSK3ß) in nerves of mutant mice. Treatment with GSK3ß inhibitors, lithium, or 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) restored Schwann cell defects, effectively bypassing plasmalogen deficiency. Our results demonstrate the requirement of plasmalogens for the correct and timely differentiation of Schwann cells and for the process of myelination. In addition, these studies identify a mechanism by which the lack of a membrane phospholipid causes neuropathology, implicating plasmalogens as regulators of membrane and cell signaling.


Assuntos
Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/fisiologia , Plasmalogênios/fisiologia , Células de Schwann/citologia , Células de Schwann/fisiologia , Animais , Diferenciação Celular/fisiologia , Condrodisplasia Punctata Rizomélica/etiologia , Condrodisplasia Punctata Rizomélica/patologia , Condrodisplasia Punctata Rizomélica/fisiopatologia , Feminino , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes Neurológicos , Modelos Neurológicos , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/fisiologia , Regeneração Nervosa , Receptor 2 de Sinal de Orientação para Peroxissomos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais
6.
Biochim Biophys Acta ; 1822(9): 1501-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22659211

RESUMO

Ether-phospholipids represent an important group of phospholipids characterized by an alkyl or an alkenyl bond at the sn-1 position of the glycerol backbone. Plasmalogens are the most abundant form of alkenyl-glycerophospholipids, and their synthesis requires functional peroxisomes. Defects in the biosynthesis of plasmalogens are the biochemical hallmark of the human peroxisomal disorder Rhizomelic Chondrodysplasia Punctata (RCDP), which is characterized by defects in eye, bone and nervous tissue. The generation and characterization of mouse models with defects in plasmalogen levels have significantly advanced our understanding of the role and importance of plasmalogens as well as pathogenetic mechanisms underlying RCDP. A review of the current mouse models and the description of the combined knowledge gathered from the histopathological and biochemical studies is presented and discussed. Further characterization of the role and functions of plasmalogens will contribute to the elucidation of disease pathogenesis in peroxisomal and non-peroxisomal disorders. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.


Assuntos
Condrodisplasia Punctata Rizomélica/metabolismo , Modelos Animais de Doenças , Plasmalogênios/fisiologia , Animais , Condrodisplasia Punctata Rizomélica/genética , Condrodisplasia Punctata Rizomélica/patologia , Glucosamina 6-Fosfato N-Acetiltransferase/deficiência , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Humanos , Camundongos , Camundongos Knockout , Receptor 2 de Sinal de Orientação para Peroxissomos , Plasmalogênios/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética
7.
PLoS One ; 6(12): e28539, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163031

RESUMO

A deficiency of plasmalogens, caused by impaired peroxisomal metabolism affects normal development and multiple organs in adulthood. Treatment options aimed at restoring plasmalogen levels may be relevant for the therapy of peroxisomal and non-peroxisomal disorders. In this study we determined the in vivo efficacy of an alkyl glycerol (AG), namely, 1-O-octadecyl-rac-glycerol, as a therapeutic agent for defects in plasmalogen synthesis. To achieve this, Pex7 knockout mice, a mouse model for Rhizomelic Chondrodysplasia Punctata type 1 characterized by the absence of plasmalogens, and WT mice were fed a control diet or a diet containing 2% alkyl-glycerol. Plasmalogen levels were measured in target organs and the biochemical data were correlated with the histological analysis of affected organs. Plasmalogen levels in all peripheral tissues of Pex7 KO mice fed the AG diet for 2 months normalized to the levels of AG fed WT mice. In nervous tissues of Pex7 KO mice fed the AG-diet, plasmalogen levels were significantly increased compared to control fed KO mice. Histological analysis of target organs revealed that the AG-diet was able to stop the progression of the pathology in testis, adipose tissue and the Harderian gland. Interestingly, the latter tissues are characterized by the presence of lipid droplets which were absent or reduced in size and number when ether-phospholipids are lacking, but which can be restored with the AAG treatment. Furthermore, nerve conduction in peripheral nerves was improved. When given prior to the occurrence of major pathological changes, the AG-diet prevented or ameliorated the pathology observed in Pex7 KO mice depending on the degree of plasmalogen restoration. This study provides evidence of the beneficial effects of treating a plasmalogen deficiency with alkyl-glycerol.


Assuntos
Glicerol/farmacologia , Éteres Fosfolipídicos/metabolismo , Plasmalogênios/metabolismo , Ração Animal , Animais , Linhagem Celular , Eletrofisiologia/métodos , Genótipo , Lipídeos/química , Camundongos , Camundongos Knockout , Tecido Nervoso/metabolismo , Condução Nervosa , Receptor 2 de Sinal de Orientação para Peroxissomos , Fosfolipídeos/química , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...